
TOYOTA D-CAT BESCHREIBUNG

a. TOYOTA D-CAT (Diesel Clean Advanced Technology) regelt umfassend die Motorsteuerung (bestehend aus Katalysatorsystem und Kraftstoffeinspritzanlage) und filtert sowohl Feinstaub (PM) als auch Stickoxide (NOx) aus dem Abgas von Dieselmotoren heraus. Das Katalysatorsystem filtert Kohlenwasserstoffe (HC) und Kohlenmonoxid (CO) aus dem Abgas und reduziert PM und NOx über einen Katalysator mit DPNR (Diesel Particulate-NOx Reduction System). Die Kraftstoffeinspritzanlage spritzt über Einspritzventil für die Nacheinspritzung in das Abgas, um das Abgas für die NOx-Reduzierung anzufetten und die Katalysatortemperatur für die Regenerierung des DPNR-Katalysators beizubehalten.

b. Bauteile des TOYOTA D-CAT:

Bauteil	Beschreibung	
DPNR-Katalysator	Reduziert HC, CO, PM und NOx.	
Fünftes Einspritzventil	Spritzt Kraftstoff in den Auslasskanal ein, um für die NOx-Reduzierung ein FETTES Luft-Kraftstoff-Verhältnis zu schaffen. Hebt außerdem die Katalysatortemperatur für die Regenerierung des DPNR-Katalysators an.	
Abgas-Temperatursensor	Zur Bewertung der DPNR-Katalysatortemperatur und zum Einstellen der Kraftstoffmenge, die das ECM während der DPNR-Katalysatorregenerierung einspritzt. Ermittelt außerdem die DPNR-Katalysatortemperatur, um zu verhindern, dass der Katalysator zu heiß wird.	

Differentialdrucksensor	Ermittelt die PM-Menge und falsche Unterdruckschlauchanordung am DPNR-Katalysator.
A/F-Sensor	Zur Steuerung des Luft-Kraftstoff-Verhältnisses. Durch Steuerung des Luft-Kraftstoff-Verhältnisses wird eine niedrige Verbrennungstemperatur erreicht und die DPNR-Katalysatorregenerierung genau geregelt.

c. Tabelle der Diagnose-Fehlercodes (DTCs) für TOYOTA D-CAT:

HINWEIS:

Diese Tabelle enthält typische DTC-Kombinationen für jede Funktionsstörung.

Problembereich	Funktionsstörung	DTC-Nr.
DPNR-Katalysator	Verschlechterung der Katalysatorwirkung oder verstopft	P2002, P1601, P1386*
	Klemmt in geöffnetem Zustand	P1386
	Klemmt in geschlossenem Zustand	P1386, P2002*
	Kleine Kraftstoff- Einspritzmenge	P1386, P2002*
Fünftes Einspritzventil	Unterbrechung im Stromkreis des fünften Einspritzventils	P1386, P2047, P2002*
	Kurzschluss im Stromkreis des fünften Einspritzventils	P1386, P2047
	Unterbrechung oder Kurzschluss im Einspritzventil für die Nacheinspritzung in das Abgas	P1386, P2047, P2002*
	Unterbrechung im Stromkreis des Abgas- Temperatursensors	P0544, P0545, P0546, P1386, P2031, P2032, P2033
Abgas-Temperatursensor	Kurzschluss im Stromkreis des Abgas- Temperatursensors	P0544, P0545, P0546, P1386*, P2002*, P2031, P2032, P2033
	Abgas-Temperatursensor	P0544, P0545, P0546, P1386*, P2031, P2032, P2033
Differentialdrucksensor	Unterbrechung im Stromkreis des Differentialdrucksensors	P1425, P1427, P2002*
	Kurzschluss im Stromkreis des Differential- Drucksensors	P1425, P1427, P2002*
	Differentialdrucksensor	P1425, P1427, P2002*
	Differentialdrucksensor verstopft	P1426, P2002*
	Falsche Anordnung der Unterdruckschläuche am	P1426, P2002*

	Differentialdrucksensor	<u> </u>
A/F-Sensor	Unterbrechung oder Kurzschluss im Stromkreis des A/F-Sensors oder der Heizung des A/F-Sensors	P0031, P0032, P1386*, r2238, r2239, r2252, P2253
	A/F Sensor	P0031, P0032, P1386*, P2238, P2239, P2252, P2253
Abgasundichtigkeiten	Abgasundichtigkeiten	P1386*, P2002*
Kraftstoffundichtigkeiten	Kraftstoffundichtigkeiten im fünften Einspritzventil	P1386*
Zufuhrpumpe	Das Einspritzventil für die Nacheinspritzung in das Abgas erhält nicht den korrekten Kraftstoffdruck	P1386*

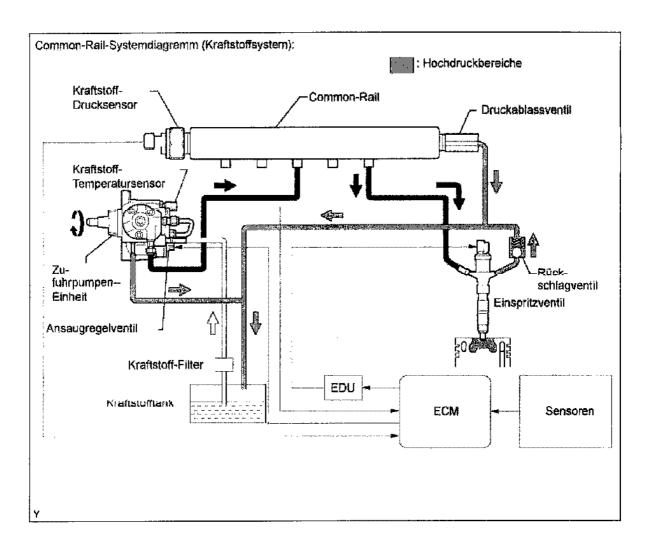
HINWEIS:

d. Diagnose-Fehlercodebeschreibung für TOYOTA D-CAT:

	Fehlercodebeschreibung für TOYOTA D-CAT:	
DTC-Nr.	Beschreibung	
P0031	Unterbrechung oder Kurzschluss im Steuerstromkreis der Heizung des A/F-Sensors (Niedrige Ausgabe)	
P0032	Unterbrechung oder Kurzschluss im Stromkreis des A/F-Sensors oder der Heizung des A/F-Sensors (Hohe Ausgabe)	
P0544	Unterbrechung oder Kurzschluss im Stromkreis des Abgas- Temperatursensors (Entgegen der Fließrichtung)	
P0545	Unterbrechung oder Kurzschluss im Stromkreis des Abgas- Temperatursensors (Entgegen der Fließrichtung) (Niedrige Ausgabe)	
P1386	Unterbrechung oder Kurzschluss im Stromkreis des Abgas- Lemperatursensors (Entgegen der Fließrichtung) (Hohe Ausgabe)	
P1425	Funktionsstörung im TOYOTA D-CAT Kraftstoffeinspritzsystem für den Auslasskanal	
P1426	Differentialdrucksensor ist verstopft oder Unterdruckschläuche sind falsch angeschlossen	
P1427	Unterbrechung oder Kurzschluss im Stromkreis des Differential- Drucksensors (Niedrige Ausgabe)	
P1428	Unterbrechung oder Kurzschluss im Stromkreis des Differential- Drucksensors (Hohe Ausgabe)	
P2002	Funktionsstörung im DPNR-Katalysator	
P2031	Unterbrechung oder Kurzschluss im Stromkreis des Abgas- Temperatursensors (In Fließrichtung)	
P2032	Unterbrechung oder Kurzschluss im Stromkreis des Abgas- Temperatursensors (In Fließrichtung) (Niedrige Ausgabe)	
P2033	Unterbrechung oder Kurzschluss im Stromkreis des Abgas- Temperatursensors (In Fließrichtung) (Hohe Ausgabe)	
P2047	Unterbrechung im Stromkreis des fünften Einspritzventils	
P2238	Unterbrechung oder Kurzschluss im Stromkreis des A/F-Sensors oder der Heizung des A/F-Sensors (Niedrige Ausgabe)	
P22J9	Unterbrechung oder Kurzschluss im Stromkreis des A/F-Sensors oder der	

^{*:} Je nach Art der Funktionsstörung erfolgt möglicherweise keine DTC-Ausgabe.

	Heizung des A/F-Sensors (Hohe Ausgabe)
	Unterbrechung oder Kurzschluss im Stromkreis des A/F-Sensors oder der Heizung des A/F-Sensors (Niedrige Ausgabe)
P2253	Unterbrechung oder Kurzschluss im Stromkreis des A/F-Sensors oder der Heizung des A/F-Sensors (Hohe Ausgabe)


BESCHREIBUNG DES COMMON-RAIL-SYSTEMS

a. Common-Rail-System:

Im Common-Rail-System wird Kraftstoff mit hohem Druck eingespritzt, um den Kraftstoffverbrauch zu senken. Dieses System liefert außerdem eine stabile Motorleistung, während es gleichzeitig Motorvibrationen und Geräusche verringert. Das System speichert Kraftstoff in der Common-Rail, der von der Zufuhrpumpe unter Druck gesetzt wurde. Durch die Speicherung von Kraftstoff unter hohem Druck kann das Common-Rail-System unabhängig von Drehzahl und Last des Motors Kraftstoff mit einem stabilen Einspritzdruck bereitstellen.

Das ECM verwendet das EDU, um eine elektrische Spannung an das Piezo-Stellglied in jedem einzelnen Einspritzventil anzulegen, mit dem Kraftstoffeinspritzzeitpunkt und - menge geregelt wird. Das ECM überwacht außerdem mit Hilfe des Kraftstoffdrucksensors den Kraftstoffdruck innerhalb der Common-Rail. Das ECM steuert die Zufuhrpumpe so an, dass der Kraftstoff-Solldruck erreicht wird.

Zusätzlich benutzt dieses System ein Piezo-Stellglied in jedem Einspritzventil, um die Kraftstoffdurchlässe zu öffnen und zu schließen. Daher kann das ECM sowohl die Kraftstoff-Einspritzzeit als auch die Kraftstoff-Einspritzmenge präzise steuern. Das Common-Rail-System ermöglicht eine Einspritzung in zwei Stufen. Um den Verbrennungsschlag abzuschwächen, führt das System vor der Haupteinspritzung eine "Voreinspritzung" durch. Hierdurch werden Motorvibrationen und -geräusche reduziert.

b. Bauteile des Common-Rail-Systems:

Bauteil	Beschreibung	
Common-Rail	Speichert den von der Zuführpumpe gelieferten Kraftstoff mit hohem Druck	
Zufuhrpumpe	Angetrieben durch die Kurbelwelle Liefert Kraftstoff mit hohem Druck an die Common-Rail	
Einspritzventil	Spritzt auf Signal des ECM Kraftstoff in den Verbrennungsraum ein	
Kraftstoffdrucksensor	Überwacht den Kraftstoffdruck im Inneren der Common-Rail und sendet Signale an das ECM	
Auf der Basis der Signale vom ECM öffnet das Ventil bei ein plötzlichen Verzögerung oder wenn der Zündschalter auf Olgeschaltet wird, um einen zu hohen Kraftstoffdruck zu verhindern.		
Ansaug-Regelventil	Regelt auf der Basis der ECM-Signale die an die Common-Rail geförderte Kraftstoffmenge und den Kraftstoffdruck in der Common-Rail	
Rückschlagventil	Hält den Druck, der vom Einspritzventil entweicht	

c. Tabelle der Diagnose-Fehlercodes (DTCs) für das Common-Rail-System

HINWEIS:

Diese Tabelle enthält typische DTC-Kombinationen für jede Funktionsstörung.

Toyota Techdoc1 Page 7 of 11

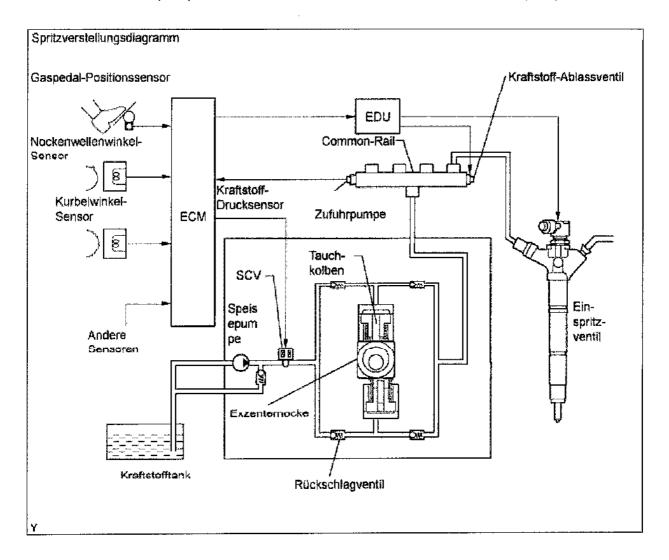
Problembereich	Funktionsstörung	DTC-Nr.
	Unterbrechung oder Kurzschluss im Stromkreis des Einspritzventils	P0200, P1238, P0093*
Einspritzventil	Klemmt in geöffnetem Zustand	P0093, P1238
	Klemmt in geschlossenem Zustand	P1238
Kraftstoffdrucksensor	Unterbrechung oder Kurzschluss im Stromkreis des Kraftstoffdrucksensors oder Drucksensorausgabe fest	P0087, P0190, P0191, P0192, P0193
Druckablassventil	Unterbrechung oder Kurzschluss im Stromkreis des Druckablassventils	P1271, P1272, P0088*, P0093*, P1229*
	Klemmt in geöffnetem Zustand	P0093
	Klemmt in geschlossenem Zustand	P1272, P0088*
Ansaug-Regelventil	Unterbrechung oder Kurzschluss im Stromkreis des Ansaug-Regelventils	P0627, P1229, P0088*
	Klemmt in geöffnetem Zustand	P1229, P0088*
EDU	EDU fehlerhaft	P0093*, P0200*, P1238*, P1271*, P1272*
Common-Rail-System (Kraftstoffsystem)	Kraftstoffundichtigkeiten im Hochdruckbereich	P0093

HINWEIS:

d. Beschreibung der Diagnose-Fehlercodes für das Common-Rail-System:

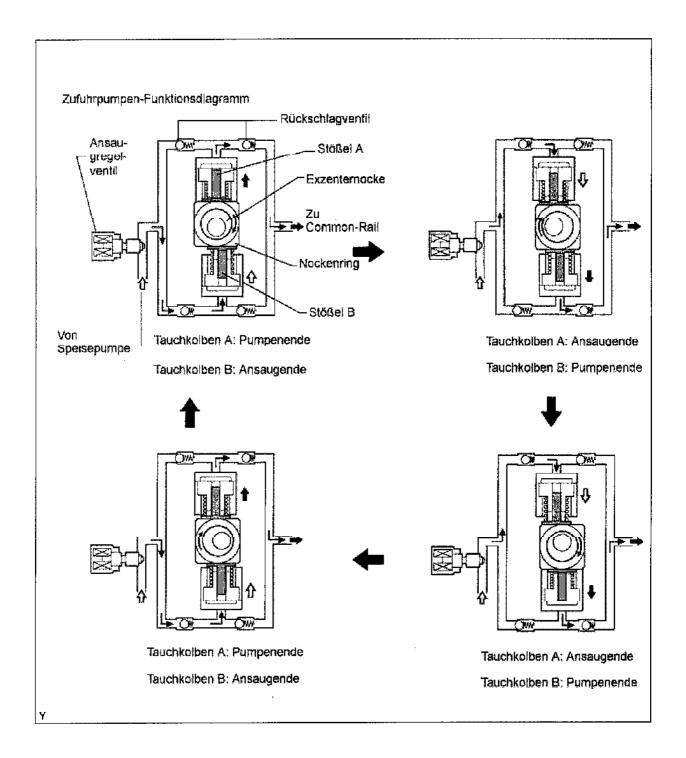
DTC-Nr.	Beschreibung
P0087	Ausgabe des Kraftstoffdrucksensors ändert sich nicht
P0088	Kraftstoffdruck in der Druckleitung zu hoch (200 Mpa [2039 kp/cm², 29007 psi] oder mehr)
P0093	Kraftstoffundichtigkeiten in Hochdruckbereichen
P0190	Unterbrechung oder Kurzschluss im Stromkreis des Kraftstoffdrucksensors (Ausgangsspannung ist zu niedrig oder zu hoch)
P0192	Unterbrechung oder Kurzschluss im Stromkreis des Kraftstoffdrucksensors (Ausgangsspannung ist zu niedrig)
P0193	Unterbrechung oder Kurzschluss im Stromkreis des Kraftstoffdrucksensors (Ausgangsspannung ist zu hoch)
P0200	Unterbrechung oder Kurzschluss im Stromkreis des EDU oder des Einspritzventils
P0627	Unterbrechung oder Kurzschluss im Stromkreis des Ansaug-Regelventils
P1229	Kraftstoffüberfüllung

^{*:} Je nach Art der Funktionsstörung erfolgt möglicherweise keine DTC-Ausgabe.


Toyota Techdocl Page 8 of 11

BESCHREIBUNG DES EINSPRITZ-STEUERSYSTEMS

Das ECM steuert die Kraftstoffeinspritzanlage über das EDU, die Einspritzventile und die Zufuhrpumpe.

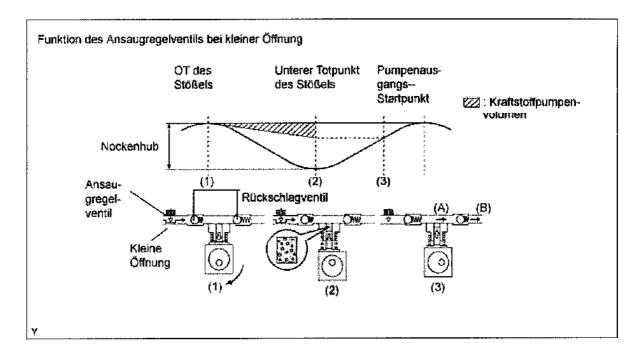

Das ECM ermittelt die Einspritzmenge und den Einspritzzeitpunkt auf der Basis der Signale vom Gaspedal-Positionssensor, vom Kurbelwinkel-Sensor und vom Nockenwellenwinkel-Sensor. Das EDU steuert die Einspritzventile gemäß den Signalen vom ECM. Das EDU steuert außerdem das Ansaug-Regelventil an der Zufuhrpumpe, um den Kraftstoffdruck zu regeln. Das im 2AD-FHV-Motor eingesetzte Piezo-Einspritzventil verursacht im Leerlauf Geräusche, da dieses Einspritzventil mit hoher Geschwindigkeit arbeitet. Um diese Geräusche zu reduzieren, steuert das EDU auf Basis der ECM-Signale das Einspritzventil so, dass es im Leerlauf langsamer arbeitet.

Die Treibstoff-Förderpumpe fördert Kraftstoff vom Kraftstofftank zur Zufuhrpumpe.

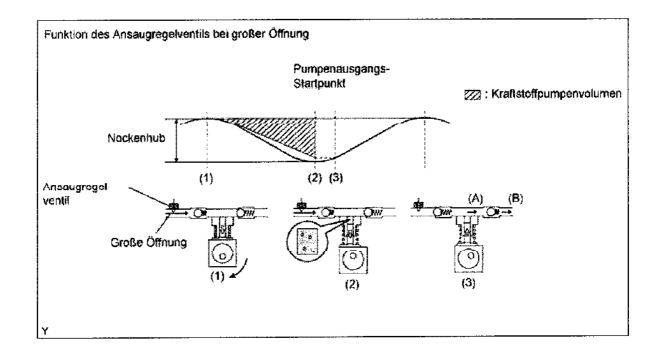
BESCHREIBUNG DER FUNKTION DER ZUFUHRPUMPE

Durch die Drehung der exzentrischen Nocke in der Zufuhrpumpe drückt die Ringnocke in der Zufuhrpumpe den Kolben A nach oben, wie nachstehend dargestellt. Kolben B (gegenüber Kolben A angeordnet) wird durch Federkraft nach oben gezogen. Das Ergebnis ist, dass Kolben B den Kraftstoff in die Pumpe saugt und Kolben A gleichzeitig Kraftstoff herausdrückt.

BESCHREIBUNG DER FUNKTION DES ANSAUG-REGELVENTILS


HINWEIS:

Das ECM steuert den Betrieb des Ansaug-Regelventils, um die Kraftstoffmenge zu regeln, die die Zufuhrpumpe zur Common-Rail fördert. Diese Steuerung dient zur Regulierung des Kraftstoffdrucks in der Common-Rail auf den Soll-Einspritzdruck.


- a. Kleine Öffnung des Saugregelventils;
 - (1) Wenn das Ansaug-Regelventil nur wenig geöffnet ist, tritt nur eine kleine Menge Kraftstoff in die Common-Rail ein.
 - (2) Wegen der schmalen Öffnung ist die Ansaugmenge trotz des vollen Kolbenhubs klein. Die Differenz zwischen der geometrischen Menge und der Ansaugmenge erzeugt einen

Unterdruck.

(3) Die Pumpe gibt Kraftstoff ab, sobald der Kraftstoffdruck an (A) größer wird als der Druck in der Common-Rail (B).

- b. Weites Öffnen des Ansaug-Regelventlis:
 - (1) Wenn sich das Ansaug-Regelventil weit öffnet, fließt mehr Kraftstoff in die Common-Rail.
 - (2) Bei vollem Kolbenhub ist die Ansaugmenge aufgrund des großen Öffnungsquerschnitts entsprechend groß.
 - (3) Die Pumpe gibt Kraftstoff ab, sobald der Kraftstoffdruck an (A) größer ist als der Druck in der Common-Rail (B).

